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Abstract 

Landsat satellite data has become ubiquitous in regional-scale forest disturbance detection. The Tasseled Cap (TC) transformation for 
Landsat data has been used in several disturbance-mapping projects because of its ability to highlight relevant vegetation changes. We used 
an automated composite analysis procedure to test four multi-date variants of the TC transformation (called "data structures" here) in their 
ability to facilitate identification of stand-replacing disturbance. Data structures tested included one with all three TC indices (brightness, 
greenness, wetness), one with just brightness and greenness, one with just wetness, and one called the Disturbance Index (DI) which is a 
novel combination of the three TC indices. Data structures were tested in the St. Petersburg region of Russia and in two ecologically distinct 
regions of Washington State in the US. In almost all cases, the TC variants produced more accurate change classifications than multi-date 
stacks of the original Landsat reflectance data. In general, there was little overall difference between the TC-derived data structures. However, 
Dl performed better than the others at the Russian study area, where slower succession rates likely produce the most durable disturbance 
signal. Also, at the highly productive western Washington site, where the disturbance signal is likely the most ephemeral, Dl and wetness 
performed worse than the larger data structures when a longer monitoring interval was used (eight years between image acquisitions instead 
of four). This suggests that both local forest recovery rates and the re-sampling interval should be considered in choosing a Landsat 
transformation for use in stand-replacing disturbance detection. 
D 2005 Elsevier Inc. All rights reserved. 
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1. Introduction 

The detection of forest disturbance is important in 
research and policy related to global carbon cycles. It is 
also useful for identifying spatial and temporal trends in 
forest management. At regional and greater scales, the only 
feasible means of monitoring forest change on a regular and 
continuous basis is with the aid of remote sensing. Landsat 
has been the workhorse sensor for regional analyses of 
forest cover and change Many 
change detection projects (e.g. 

* Corresponding author. 
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Landsat data that has been transformed using the Tasseled 
Cap transformation 

This transformation reduces the Landsat 
reflectance bands to three orthogonal indices called bright­
ness, greenness and wetness. While there are clear opera­
tional savings involved with storing and processing only 
three spectral bands per image date instead of six, there has 
been little formal investigation of the impact of this 
transformation on the accuracy of change maps. The goal 
of this study was to quantify the degree to which it is 
possible to identify stand-replacing disturbance (disturban­
ces removing almost all of the forest canopy) using different 
combinations of the Tasseled Cap indices in relation to the 
original Landsat bands and a newly developed Disturbance 
Index (DI). 
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number of training samples is low in relation to the number 
of dimensions, the variance of class parameter estimates can 
be large, resulting in higher classification error 

Thus, if the disturbance signal in competing 
transformations is equal in strength, duration, and robust­
ness, the transformation composed of the fewest bands may 
be preferable. 

The Dl transformation that was tested here is expressed 
in a single band per date. The transformation itself, 
described later, is based upon the observation that recently 
cleared stands typically have a higher Tasseled Cap bright­
ness value and lower Tasseled Cap greenness and wetness 
values than undisturbed forest areas. The Dl plane of 
transformation ) divides Tasseled Cap space in a way 
that segregates pixels fitting this "disturbed" profile from all 
others. It is hoped that by testing Dl and the other Tasseled 
Cap-related data structures in different disturbance detection 
scenarios, information will be gained regarding the sensi­
tivity of each structure to sudden forest canopy removal. 
This information may contribute to the choice of appropriate 
transformations for Landsat data in future disturbance 
detection projects. 

2. Methods 

2.1. Study areas 

Three study areas were used to compare the effectiveness 
with which different Landsat data structures facilitate forest 
disturbance composite analysis. Two of these areas were in 
physiographically distinct regions of Washington State. The 
East Cascades Washington (ECW) study area, centered at 
47.3-N/120.9-W, included a 500,000 ha portion of the Path 
45/Row 27 Landsat TM scene. The West Cascades 

Brightness 

Fig. 1. Plane of transformation for the Disturbance Index in Tasseled Cap space. Values are taken from 1991 West Cascades Washington (WCW) study area. 
The units for each axis are standard deviations above or below the mean Tasseled Cap brightness, greenness, and wetness values of the scene's forested pixels. 
Red circles represent pixels disturbed immediately prior to 1991; blue circles represent undisturbed pixels. The size of each circle is proportional to the number 
of pixels at that data point. Only data points representing at least .25% of the undisturbed and disturbed classes are plotted. 

2014-919500009097 



S.P. Healey et al. I Remote Sensing of Environment 97 (2005) 301-310 303 

Washington (WCW) area, centered at 45.9-N/122.1-W, was 
a 381,000 ha subset of the Path 46/Row 28 scene. The ECW 
study area lies east of the crest of the Cascades, receives 
between 500 and 1800 mm of rain per year 
and is characterized by relatively open canopies of ponder­
osa pine (Pinus ponderosa) and Douglas-fir (Psuedotsuga 
menzeisii ). The WCW region lies west of the Cascade crest 
and receives greater rainfall, 2000-2550 mm of rain per 
year than the ECW site. The Douglas-fir 
and western hemlock (Tsuga heterophylla )-dominated forest 
of the WCW study area exhibits considerably denser canopy 
cover than ECW. Both areas supported large-scale forest 
harvesting during the two intervals studied (1988-1992, 
1992-1996) and a 2700-ha stand-replacing fire occurred in 
the ECW area during the second interval studied. 

The other study area, RUS, was a 420,000-ha section of 
the St. Petersburg region of Russia in Landsat scene Path 
185, Row 19 (58.8-N/30.0-E). The natural vegetation of this 
region belongs to southern taiga type; major conifer species 
include Scots pine (Pinus sylvestris) and Norway spruce 
(Picea abies) both growing in pure and mixed stands. After 
disturbance, these species are often replaced by northern 
hardwoods including birch (Betula pendula) and aspen 
(Populus tremula ). The climate is maritime with cool wet 
summers and long cold winters. Annual precipitation is 
600-800 mm. The region is a part of the East-European 
Plain with elevations between 0 and 250 m a. s. I. The 
terrain is mostly flat and rests on ancient sea sediments 
covered by a layer of moraine deposits. Forests have been 
repeatedly harvested on 80-100 year rotation, and fire 
control is very effective throughout the region 

2.2. Data structures tested 

In each of three study areas, the first data structure tested 
was an 18-band composite stack of the 6 Landsat TM 30-m 
reflectance bands covering the three test dates (two 
intervals). Landsat data has been a common source of 
information for regional change detection projects because 
of its availability, resolution, and sensitivity to forest 
change. While the original 18-band composite images 
(hereafter called OB, for "original bands,") incur high 
storage and computational costs, their inclusion in this study 
provides a baseline against which to judge the performance 
of lower-dimensional data transformations. 

The Tasseled Cap transformation reduces the six TM 
reflectance bands of a single image date to three indices: 
brightness, greenness, and wetness (B, G, and W ). 
Combining these indices for three dates, we tested a 9-band 
BGW composite of each study area. A six-band subset 
containing only B and G for the 3 years was also tested. 
This subset was investigated because of the ubiquitous use 
of just B and G in change detection projects, especially 
when Landsat MSS data is used. In addition, we tested W 
alone, because several studies have emphasized its value in 

are clearly affected by stand-replacing 
disturbance. 

2.3. The disturbance index (DI) 

The final data structure tested as an input for composite 
analysis was the Disturbance Index. Dl was designed for 
this study to highlight the un-vegetated spectral signatures 
associated with stand-replacing disturbance and separate 
them from all other forest signatures. Specifically, the Dl is 
a linear combination of the three Tasseled Cap 

indices: B, G, and 
W. The formulation of Dl takes advantage of the 
assumption that recently cleared forestland exhibits high 
B and low G and W in relation to undisturbed forest 

). This assumption was developed through pilot studies 
using imagery from different regions in the Pacific 
Northwest, and was further tested in the boreal forest of 
Canada and mixed forest of Virginia (J. Masek, personal 
communication). 

For the Dl transformation, linear combination of an 
image's B, G, and W values is facilitated by first re-scaling 
(Eq. (1 )) each band to its standard deviation above or below 
the scene's mean forest value, 

o1P 

where Br, Gr, Wr= rescaled Brightness, Greenness, and 
Wetness, B1 , G1 , W1 = mean forest Brightness, Greenness, 
and Wetness, Br, Gr, Wr= standard deviation of forest 
Brightness, Greenness, or Wetness. 

This re-scaling process normalizes pixel values across 
Tasseled Cap bands in a way that allows their subsequent 
algebraic combination (Eq. (2)). The reference population 
from which mean (I ) and standard deviation (r) values are 
drawn should be representative of the scene's forested 
pixels. The work reported here used a reference population 
composed of all pixels labeled as "forest" in pre-existing 
maps of land cover. This process is separate from the later 
selection of training data for supervised composite analysis. 
Once the three component indices are normalized, they can 
be combined linearly (Eq. (2)) as follows: 

o2P 

Given the above assumptions that disturbed areas will 
have high positive Br (brighter than average) and low 
negative Gr and Wr (less green and wet than average) 
values, recent cuts should display high Dl values. Stands 
displaying low negative Brand high positive Grand Wr (e.g. 
young, fully regenerated stands) will exhibit low Dl values, 
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and all others will tend toward zero, as shown in . This 
compression of undisturbed pixels toward a mean value 
simplifies the ''unchanged'' forest class, and may reduce the 
effort needed to correctly train that class in composite 
analysis. Since Dl is a single band, the disturbance 
information present in three dates of imagery can be 
visualized in a standard RGB display which 
facilitates the training process in supervised composite 
analysis. 

2.4. Testing process 

Supervised composite analysis 
was used as a framework for comparing the above data 
structures. Composite analysis of multi-temporal Landsat 
imagery has proven to be an effective change detection 
technique in several regional-scale monitoring efforts (e.g. 

In each study area, 
three dates of Landsat imagery ) were gee-rectified 
using an automated tie-point program described by 

. In ECW and WCW, monitoring intervals 
of 4 years were used. In RUS, available imagery only 
allowed intervals of 7 years. No multi-date radiometric 
normalization was performed on these images. Since the 
change detection method used here, supervised classifica­
tion, does not rely upon radiometric calibration of the input 
axes ), radiometric normalization was 
unnecessary. After spatially co-registering the three dates at 
each study area, the clearcuts and stand-replacing fires 
occurring over the two periods were manually digitized 
aided by simultaneous viewing of the Tasseled Cap imagery. 

found I ittle difference between 
using Tasseled Cap data and other sources of reference data 
for identifying stand-replacing disturbance. The digitized 

Fig. 2. Three dates of 01 as viewed in a typical RGB monitor. The first date 
(1988) is plotted in the red color gun, the second (1992) in the green, and 
the third (1996) in the blue. Using the assumption that 01 is high in 
disturbed areas, additive color logic can be used to interpret this multi­
temporal image. Blue pixels have a high 01 only in the third date, indicating 
disturbance between the second and third dates. Cyan-colored areas are 
high in the second and third dates but not the first, indicating a disturbance 
between the first and second dates. The yellowish colors, high in the red 
and green color guns and lower in the blue, indicate stands disturbed before 
the first date that are becoming re-vegetated by the third date. 

Table 1 
Landsat TM and ETM+ imagery 

Study Area Path Row Acquisition date Satellite 

RUS 185 19 May 23, 1987 Landsat 5 
RUS 185 19 July 13, 1994 Landsat 5 
RUS 185 19 May 5, 2001 Landsat 7 
ECW 45 27 July 23, 1988 Landsat 5 
ECW 45 27 August 3, 1992 Landsat 5 
ECW 45 27 July 13, 1996 Landsat 5 
wcw 46 28 August 31, 1988 Landsat 5 
wcw 46 28 September 9, 1991 Landsat 5 
wcw 46 28 August 21, 1996 Landsat 5 

disturbances were used to create "truth" layers against 
which to evaluate the accuracy of change maps produced 
using the data structures under study. 

In each study area, six Landsat reflectance bands were 
combined to create a three-date "stack" (the 18 band OB 
structure). This stack was then used to create multi-temporal 
stacks of the transformations discussed earlier: BGW (9 
bands), BG (6 bands), W (3 bands), and Dl (3 bands). All of 
these data structures were masked to include only forest 
pixels, using the Interagency Vegetation Mapping Program 
land cover map ) in ECW 
and WCW, and a locally produced land cover map for RUS. 
Each data structure (OB, BGW, BG, W, Dl) was classified 
repeatedly using a maximum likelihood decision rule. 
Classifications were trained from a pool of the larger 
disturbances (> 2 ha) that were digitized earlier. There were 
at least 400 disturbance polygons larger than 2 ha in both 
disturbance periods in each of the three study areas. Each 
data structure was classified 50 times with 5 randomly 
selected training polygons from each of the two periods, 
then 50 times with 10 training polygons per period, then 
with 15, up to 100 polygons per period. In other words, each 
data structure was classified fifty times at twenty levels of 
increasing amounts of training data. In addition to the two 
change classes sought in each classification, a fixed set of 
approximately 10 "no change" polygons was used in each 
classification to create a class for unchanged forest. 

The resulting classifications were compared to the 
"truth" layer created from the digitized disturbances, 
resulting in a comprehensive error matrix for each classi­
fication. displays an error matrix representative of 
the 50 trials at the level of training in the RUS study area 
that used 15 polygons per change period. From each such 
matrix, overall and kappa (see 
accuracies were derived. Kappa values of the classifications 
produced in the 50 trials at each level of training data were 
the basis for comparative analyses. 

To test the duration of the disturbance signal in each 
transformation, the middle date was removed from each data 
structure, effectively doubling the length of the monitoring 
interval. The two pools of disturbance polygons in each 
study area were combined and were used to train a single 
change class. Accuracies of these longer-interval classifica­
tions were measured as before except that fewer levels of 
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Table 2 
Examples of error matrices used in comparison of data structures 

01 Reference w Reference 

No Change Change Total No Change Change Total 
change period 1 period 2 change period 1 period 2 

Map No change 2,245,104 5235 7833 2,258,172 Map No change 2,193,382 7298 10,303 2,210,983 
Change 122,859 85,127 3864 211,850 Change 111,608 80,300 3913 195,820 
period 1 period 1 
Change 58,249 4588 65,823 128,661 Change 121,223 7352 63,304 191,879 
period 2 period 2 
Total 2,426,213 94,950 77,520 2,598,683 Total 2,426,213 94,950 77,520 2,598,683 

BG Reference BGW Reference 

No Change Change Total No Change Change Total 
change period 1 period 2 change period 1 period 2 

Map No change 2,235,637 9321 6628 2,251,585 Map No change 2,163,777 5019 6128 2,174,924 
Change 94,501 32,932 20,986 148,419 Change 117,036 82,973 3633 203,642 
period 1 period 1 
Change 96,075 52,697 49,906 198,679 Change 145,401 6,957 67,759 220,117 
period 2 period 2 
Total 2,426,213 94,950 77,520 2,598,683 Total 2,426,213 94,950 77,520 2,598,683 

OB Reference 

No change Change period 1 Change period 2 Total 

Map No change 1,892,549 4265 3853 1,900,667 
Change period 1 178,176 80,621 6,639 265,436 
Change period 2 355,488 10,063 67,027 432,579 
Total 2,426,213 94,950 77,520 2,598,683 

Matrices show the agreement, in number of pixels, between composite analysis results and manually digitized reference maps. These examples came from the 
RUS study area when 15 polygons were used to train the disturbance class for each period. Fifty classifications were produced with each data structure at each 
level of training data, and kappa statistics derived from the error matrices of these classifications were the basis of comparison among the different data 
structures. 

training data were tested (5, 15, 25, ... 95training polygons 
instead of 5, 10, 15, ... 1 0 Opolygons). 

3. Results 

Although overall accuracies (i.e. the percentage of pixels 
correctly classified) were-computed for the classifications at 
each site, kappa was considered a better measure of 
accuracy. Because the great majority of pixels are usually 
unchanged, overall accuracy is relatively insensitive to the 
quality of the change information. For example, if no effort 
was made at change detection in the WCW area and all of 
the pixels were mapped as ''no change'' for the 2 monitoring 
periods, the overall accuracy would still be 95%. The kappa 
value of this map, on the other hand, would be close to zero. 
Thus, all discussions of accuracy will refer to kappa 
accuracy. 

shows the mean kappa value of disturbance 
detection classifications produced at the RUS site with 
increasing numbers of training polygons. Although the 
relative performance of the different data structures varied 
among study sites the graph in has two 
features representative of all sites. First, using more than 
15 training polygons per change period resulted in little or 

no improvement in accuracy. Second, the differences in 
accuracy between data structures, though small in some 
cases, were consistent across levels of parameterization. 
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Fig. 3. Mean kappa values for change maps in RUS using two 7 -year 
monitoring periods. At each level of parameterization (X-axis), a fixed 
number of randomly selected polygons per change period were used to train 
a supervised classification. Each data point represents the mean kappa of 50 
change classifications using a given number of training polygons per 
change period. Change periods in this case were: disturbed 1987-1994 and 
disturbed 1994-2001. A constant set of 10 "no-change" polygons was also 
used in each classification. 
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Fig. 4. Multiple comparisons among data structures. Structures are listed from left to right in descending order of mean classification kappa. Structures with 
statistically similar kappas (using p = .05 Bonferoni simultaneous confidence intervals) are joined with underlines. Compared structures included: disturbance 
index (01); Wetness (W); brightness and greenness (BG); brightness, greenness, and wetness (BGW); and the original Landsat bands (08). The left column 
shows results using two shorter monitoring intervals (4 years each in ECW and WCW, and seven in RUS), and the right column shows results using a single, 
longer monitoring period (8 years in ECW and WCW, 14 years in RUS). 

Therefore, a single representative level of parameterization 
was chosen for comparative analyses. Specifically, com­
parisons were made using 15 training polygons of stand­
replacing disturbance per monitoring period (30, total, for 
the 2-period classifications) in addition to a constant set of 
ten polygons representing unchanged forest. 
show the mean (of 50 trials) kappa accuracy of each of the 
tested data structures. Analysis of variance (ANOV A) at 
each site indicated that data structure had an effect on 
kappa at the p < .01 level. Multiple comparisons of the 
performance of the different data structures were made 
using Bonferroni significant difference (BSD) method at 
the 95% confidence level; the results of this analysis are 
displayed in 

.6 

.5 
o:s 
a. 
a. .4 

~ 
.3 

.2 

.1 

RUS 
(Mixed Coniferous 

and Deciduous) 

ECW 
(Open Canopy, 

Coniferous) 

Study Area 

wcw 
(Closed Canopy, 

Coniferous) 

Fig. 5. Mean kappa values for composite analysis using different data 
structures to detect stand-replacing disturbance in two shorter monitoring 
periods. Kappas were determined using manually digitized polygons for 
each area as a reference. Change classes in each study area included: 1987-
1994 and 1994-2001 in RUS; 1988-1992 and 1992-1996 in ECW; and 
1988-1991 and 1991-1996 in WCW. 

The performance of the various data structures varied 
among regions. The largest separation between data 
structures occurred in the Russian study site. Dl performed 
significantly better than the Tasseled Cap structures, which 
in turn performed better than the original Landsat bands. 
This pattern was observed both in classifications using two 
7-year monitoring periods and in those using a single 14-
year monitoring period. In WCW, the structures composed 
of more than one band per year, including the original 
Landsat stack, outperformed the single-band structures of 
W and Dl. The difference between multiple- and single­
band structures increased using a longer monitoring period. 
There was little difference in performance in ECW; 
classification accuracies were statistically similar among 

.8.-------------------, 

RUS 
(Mixed Coniferous 

and Deciduous) 

ECW 
(Open Canopy, 

Coniferous) 

Study Area 

wcw 
(Closed Canopy, 

Coniferous) 

Fig. 6. Mean kappa values for composite analysis using different data 
structures to detect stand-replacing disturbance in one longer monitoring 
period. Kappas were determined using manually digitized polygons for 
each area as a reference. Change classes in each study area included: 1987-
2001 in RUS, and 1988-1996 in ECW and WCW. 
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all data structures except the original bands, which lagged 
the others. 

The most significant effect of using a longer monitoring 
period was seen in WCW, the wettest and most biologically 
productive of the sites. In this study area, the performance of 
the two single-band structures, Dl and W, fell dramatically 
in relation to the performance of the other data structures 

The only change seen in ECW using the longer 
monitoring period was that the original bands gained in 
relation toW. Dl remained significantly better than the other 
structures in RUS in the longer 14-year period, although the 
other single-band structure, W, declined in relation to BGW 
and BG. 

4. Discussion 

4.1. Choice of data structure for detection of forest 
disturbance 

The accuracy of change detection through composite 
analysis was in many cases shown to depend on the 
transformation of Landsat data used to support the 
classification. In general, the Tasseled Cap-derived trans­
formations (BGW, BG, W, Dl) performed significantly better 
than the original Landsat TM band data. This suggests that 
the Tasseled Cap and Disturbance Index transformations 
successfully preserve and highlight information relevant to 
forest disturbance while simultaneously reducing the 
amount of information that must be processed and stored. 

In general, the Tasseled Cap-derived structures produced 
equally accurate change classifications. Exceptions to this 
equality occurred in RUS when Dl outperformed the others, 
and in WCW, where Dl and W were outperformed by the 
structures containing more bands. These exceptions are 
likely related. WCW is the most mesic of the three study 
sites, and re-vegetation after disturbance is fastest there. 
Clearcuts or fires occurring in the beginning of a monitoring 
period may be covered with grass, shrubs or even small 
trees after only 4 years. In cases such as this, supplementary 
axes may be needed to characterize the more varied 
conditions observed following stand-replacing disturbance. 
Conversely, relatively slow re-vegetation at the RUS site 
may be related to the superior performance of Dl there. 
Severe climate and poor soils contribute to lower succession 
rates at the RUS site. In addition, post-harvest re-stocking is 
less common in RUS than in Washington, and when re­
colonization does occur, it is usually led by relatively bright 
hardwoods. Slow recovery of conifers may minimize the 
spectral diversity of cuts occurring in different years during 
a particular monitoring period, thereby, simplifying the 
classes representing change in composite analysis. This 
simplification may allow the use of lower-dimension data 
structures. 

The idea that more complex data structures are 
required to define the more complex (i.e. variable) 

change classes is also supported by the results of 
disturbance detection using a longer monitoring period. 
Increasing the time between monitoring dates allows 
succession to create more variability among areas to be 
identified as disturbed. Accuracies produced by the 
single-band structures W and Dl generally declined in 
relation to larger-dimension data structures when longer 
monitoring periods were used, particularly in WCW, 
where succession is fastest. 

In RUS, Dl actually performed better than the data 
structures containing more bands. This suggests that Dl 
has an advantage in this area that goes beyond band depth. 
Dl is designed to accentuate the separation between 
undisturbed forest and stands showing high brightness, 
low greenness, and low wetness, the presumed profile of 
recently disturbed forest. As long as rapid succession does 
not cause disturbed areas to deviate from this simplistic 
profile, the separation of disturbed and undisturbed forest 
that Dl accomplishes may provide a fundamental advant­
age in identifying stand replacement. More work is needed 
to determine if shorter monitoring intervals could be used 
in areas of more rapid succession to produce the same 
advantage seen in RUS. 

There are several factors to be considered in choosing a 
transformation of data to be used in the detection of stand­
replacing disturbance. In general, simpler data structures are 
easier to store and process. Further, single-band trans­
formations can be displayed multi-temporally in a single 
monitor to allow easy development of training data (e.g. 

In terms of performance, although little difference 
was typically observed between any of the four TC-based 
transformations studied, Dl performed the best in the 
simplest disturbance detection tasks, and the higher-dimen­
sion structures performed best in the most complex tasks. 
Consequently, succession rate and length of monitoring 
interval, both factors that influence the spectral variability of 
disturbed pixels, should be considered in the choice of a 
transformation for Landsat data in the detection of stand­
replacing disturbance. 

4.2. The Disturbance Index 

The Dl value of an area at a single date relates little of its 
disturbance history. Dl simply quantifies how close in 
Tasseled Cap space a pixel is to the areas in the scene having 
the highest brightness and lowest greenness and wetness. 
Clouds and exposed rock can often have high Dl values. 
When viewed in sequence, however, Dl images provide a 
direct way to highlight pixels that move from an average 
forest condition to a disturbed condition. shows the 
mean response of Dl to stand-replacing disturbance in the 
three study areas. The Dl of a stand typically goes from near 
zero or slightly negative before disturbance to between 2 
and 5 after being disturbed. 

The variability in Dl values among the different study 
areas suggests that the contrast between disturbed and 
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Fig. 7. Mean 01 values before and after disturbance. Using the digitized "truth" layer developed for each study area, it was possible to track the mean 01 values 
of three groups: unchanged pixels, pixels disturbed in the first interval, and pixels disturbed in the second interval. In all cases, a sharp increase in 01 was 
observed at the time of disturbance although this increase varied by study area and by period. 

undisturbed forest is different from ecosystem to ecosystem. 
Forests that are already bright, perhaps having a large 
hardwood or ground component in their signal, may show a 
smaller spectral change when cleared than darker conifer 
stands. For example, forests in ECW are relatively open, so 
the spectral distance between undisturbed and cleared forest, 
which is essentially what Dl quantifies, is smaller than it is 
in the closed forests of WCW. Accordingly, the mean Dl 
value for new cuts in ECW is 2.9, whereas new cuts average 
4.8 in WCW 7). Dl values in RUS fall between these 
two sites, although RUS has a hardwood component not 
present in the others that further affects the contrast between 
disturbed and undisturbed forest. 

In addition to varying geographically, the magnitude of 
Dl can also fluctuate by interval within the same area 
7). For example, disturbed areas in the 1991 WCW image 
have a mean Dl of 5.5 whereas disturbances in the same 
scene in 1996 average a 4.2 Dl. This variability may result 
from atmospheric or phenological differences between the 
two images. Another potential source of variability is the 
dynamic nature of the reference or '' norming'' population 
used to rescale the Tasseled Cap indices that are input into 
the Dl transformation. These rescaled indices are expressed 
in standard deviations above or below the mean forest value 
for each individual image. Since disturbance and re-growth 
may somewhat alter the mean forest condition from year to 
year, Dl calibration may show a corresponding drift. The 
change detection method used here, supervised composite 
analysis, allowed date-specific parameterization of change 
classes, minimizing the need for cross-date normalization. 
However, a more automated thresholding procedure would 
require a more stable interpretation of Dl. While it is clear 

that careful radiometric normalization would contribute to 
Dl stability, more research is needed to determine if 
alternate norming techniques, such as drawing the mean 
forest condition statistics solely from unchanged areas, 
would also add stability. 

The construction of the Dl transformation itself also 
merits more study. In the formulation given here, the 
rescaled Tasseled Cap indices are all given the same 
weight and are combined linearly. While this transforma­
tion has the advantage of simplicity and ease of 
interpretation, a more complex formulation may maximize 
the spectral separation between disturbed and undisturbed 
forest. If research reveals that the Tasseled Cap indices 
recover at different rates after disturbance, for example, it 
may be desirable in some cases to give a higher weight to 
the more stable components. 

Dl takes advantage of the fact that stand-replacing 
disturbance creates a strong and relatively predictable 
spectral signal. Although Dl performed worse than larger 
data structures in the case (WCW, 8-year interval) where 
rapid succession and a longer monitoring interval allowed 
the disturbance signal to decay, it performed as well as 
any Tasseled Cap structure in all other cases and 
significantly better than others in RUS, where slow 
succession rates prolong the disturbance signal. Dl has 
several properties that make it attractive for automated 
disturbance detection: it is easily calculated and inter­
preted; it reduces data storage and processing require­
ments; and it allows visualization of change between three 
dates in a single color monitor. The results of this study 
suggest that as long as monitoring interval length is 
attuned to the local succession rate, the use of Dl to 
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detect stand-replacing disturbance involves no sacrifice in 
accuracy. 

5. Summary 

Five multi-temporal, Landsat-derived data structures 
(OB, BGW, BG, W and Dl) were tested in change 
classification exercises in three ecologically distinct 
regions. The untransformed Landsat reflectance data 
performed as well as the Tasseled Cap-transformed data 
only in WCW, the study site with the most rapid re­
vegetation rate. There was little difference in classification 
accuracy among the Tasseled Cap-based data structures. 
However, the Dl structure, described here for the first 
time, created significantly more accurate disturbance maps 
in RUS, where forest recovery is slower than in the other 
areas. At the same time, Dl produced less accurate maps 
(along with W, the other single-band transformation) in 
WCW when longer, 8-year monitoring intervals were 
used. These results suggest that as long as monitoring 
intervals are relatively short in relation to local forest 
recovery rates, simple transformations can be used in 
automated disturbance mapping to reduce Landsat data 
volume without sacrificing accuracy. In the most straight­
forward disturbance detection projects, the Dl transforma­
tion may provide a significant advantage over the Tasseled 
Cap indices. It should be emphasized that the disturbances 
mapped in these exercises involved complete removal of 
vegetation; results from this study may not apply to the 
identification of more subtle forest changes. Dl values for 
disturbed area were consistent neither across time nor 
space. While the supervised classification algorithm used 
here accommodated scene-specific interpretation of Dl, 
more general use of the transformation will require 
methodology that standardizes the index. Research ques­
tions that may contribute to a more stable interpretation of 
Dl include: the sensitivity of the index to varying 
"norming" populations; the behavior of Dl after disturb­
ance as stands develop, and the potential for using more 
complex formulations of the transformation. 
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